工学 >>> 力学 农业工程 林业工程 工程与技术科学基础学科 测绘科学技术 材料科学 矿山工程技术 石油与天然气工程 冶金工程技术 机械工程 光学工程 仪器科学与技术 动力与电气工程 能源科学技术 核科学技术 电子科学与技术 信息与通信工程 控制科学与技术 计算机科学技术 化学工程 纺织科学技术 印刷工业 服装工业、制鞋工业 轻工技术与工程 食品科学技术 土木建筑工程 水利工程 交通运输工程 船舶与海洋工程 航空、航天科学技术 兵器科学与技术 环境科学技术 安全科学技术 工业设计
搜索结果: 1-15 共查到工学 LiFePO4相关记录40条 . 查询时间(0.093 秒)
本发明涉及一种具有(020)取向的薄片状LiFePO4纳米晶粉体及其制备方法。 薄片状晶体尺寸在200纳米-5微米,厚度在50纳米-500纳米之间。具体制备 方法是:把廉价的水溶性亚铁盐,氢氧化锂分别在不同容器中用蒸馏水溶解,将 浓磷酸用蒸馏水稀释。然后将水溶性亚铁盐溶液和磷酸溶液混合,再在强力搅拌 下缓慢倒入氢氧化锂溶液。水溶性亚铁盐、磷酸和氢氧化锂用量控制为摩尔比1∶ 1∶(2.5-3)。最后...
本发明公开了一种锂离子电池正极材料LiFePO4/C的制备方法。首先在惰性气体吹扫的条件下,将铁盐、锂盐和含磷化合物于溶剂中溶解或分散,制成反应前驱体;然后将上述反应前驱体转移入高压反应釜,于一定温度反应一段时间;经过滤、洗涤和干燥后与碳源混合,然后煅烧处理,得到LiFePO4/C锂离子电池正极材料。采用该方法可以解决传统制备方法中高结晶性、特殊形貌和纳米尺度粒径不可兼得的难题,制备得到结晶完全、...
中国科学院金属研究所专利:在LiFePo4颗粒表面均匀、可控包覆导电性碳层的方法
中国科学院金属研究所专利:一种薄片状LiFePO4纳米晶粉体及其制备方法
本发明涉及锂离子电池用磷酸盐型正极板的制备技术,具体为一种不含粘合剂的锂离子电池用多孔导电LiFePO4正极板的制备方法。该方法通过低温烧结冷压成型的LiFePO4正极材料粉末形成多孔结构,再通过化学气相沉积的方法在已经形成多孔结构的LiFePO4颗粒表面均匀包覆一层导电性碳膜来获得多孔导电LiFePO4正极板。本发明可以在不使用任何粘合剂和溶解粘合剂的溶剂的情况下制备出多孔导电LiFePO4正极...
本发明涉及锂离子电池领域,属于磷酸盐型块体电极的制备技术及准确的电极材料表征技术,具体为一种不含任何粘合剂及有机溶剂的锂离子电池用多孔LiFePO4块体电极的制备方法,适用于改进大容量块体电极且能精确表征电极材料性能。本发明方法包括:将一定量的正极材料与有机物混合,冷压成块。再通过低温烧结的方法得到具有多孔结构的正极块体电极,或者同时通过化学气相沉积的方法将多孔结构的LiFePO4颗粒表面均匀包覆...
中国科学院金属研究所专利:锂离子电池用多孔LiFePO4块体电极的制备方法
中国科学院金属研究所专利:合成具有超高大倍率充放电性能的超薄纳米片状LiFePO4的方法
磷酸铁锂电池电压变化范围较宽且充放电特性敏感,一般不宜简单应用于需要长期处于浮充状态的直流操作电源系统。为此,提出了一种磷酸铁锂电池在直流操作电源系统应用中的优化控制方案,根据磷酸铁锂电池工作状态,利用AC/DC充电电源优化控制电池的充放电电流大小,使电池在浮充状态下获得电池期望的充放电电流,以实现磷酸铁锂电池在直流操作电源系统中的安全高效经济应用。
以二氰二胺为氮掺杂剂,采用溶胶凝胶法制备了氮掺杂碳包覆LiFePO4的复合材料,并且分析了氮掺杂量对电极材料结构与性能的影响。研究结果表明,柠檬酸和二氰二胺在高温下的原位分解使合成的LiFePO4颗粒表面包覆了一层氮掺杂的碳膜,有效的增加了各颗粒间的电接触,改善了LiFePO4的电化学性能。当氮掺杂量为0.35 wt%时,LiFePO4@N0.35%C样品具有最优良的电化学性能。在2.5~4.2...
锂离子电池是当今社会移动电子设备的必要电源,由正极、负极、隔膜、电解液等组成,其关键性能指标(如倍率性能和循环寿命)由正极材料的电化学性能决定。LiFePO4是公认的正极材料,为提高其电化学性能,人们长期致力于缩短锂离子的扩散距离,即减小[010]方向的尺寸。最近的研究表明,电极由大量粒子组成,其电化学性能主要依赖于充放电过程中同时参与电化学反应的粒子(活化粒子)占总粒子数的比例。因此,如何获得具...
针对复杂工况下LiFePO4 动力电池组state-of-charge(SOC) 估计不准确的问题, 基于信息融合技术提出一种 SOC 估计信息融合架构和多模型切换估计(MMSE) 算法. 该算法首先对充放电过程进行特征提取和模式分类, 针对 特定的模式进行模型优化; 然后在系统运行时根据特征匹配结果切换估计模型, 实现优化估计; 最后通过纯电动客车 实际运行数据的仿真实验验证了所提出MMS...
采用溶胶凝胶法, 以LiOH, Fe2C2O4和NH4H2PO4为原材料, 以乙二醇为络合剂和碳源, 通过对合成LiFePO4的前驱体在不同温度和时间的分步煅烧, 获得了兼具良好结晶性、亚微米颗粒尺寸和含适量原位引入Fe2P的LiFePO4/C复合材料, 该材料作为锂离子电池正极材料表现出优良的倍率性能. 采用X射线衍射、扫描电子显微镜、元素分析等方法和恒电流充放电等测试技术对获得的LiFePO4...
以廉价的LiOH, Fe(NO3)3和NH4H2PO4为原料, 采用低温水热法(130℃)获得LiFePO4微球前驱体, 并经进一步高温煅烧, 获得具有介孔结构的橄榄石形LiFePO4/C微球. SEM, TEM, HRTEM和BET表征表明, 所制备的LiFePO4/C微球由纳米颗粒聚集而成, 颗粒间隙交织构成介孔通道. 这种介孔微球结构同时具有高的比表面积和振实密度(≥1.4 g cm-3),...
通过Mn掺杂显著提高了LiFePO4/C材料的低温电化学性能. 微量Mn掺杂的LiFe0.98Mn0.02PO4/C材料在0℃时以1C放电容量达到其在20℃时放电容量的95%, 而LiFePO4/C材料相应只达到85%. LiFe0.98Mn0.02PO4/C材料在–20℃以不同倍率放电时容量分别为124.4 mA•h•g–1 (0.1C), 99.8 mA•h...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...