搜索结果: 1-8 共查到“数学 PCA”相关记录8条 . 查询时间(0.062 秒)
为了确保电气设备的安全可靠运行,提出基于主成分分析法与宽度学习系统的逆变器故障诊断方法。利用主成分分析法对逆变器输出的电流信号进行处理,提取信号特征;构建宽度学习系统,并编写不同故障模式下的故障编码;利用不同故障模式下的信号特征对宽度学习系统进行训练,利用网络输出编码实现故障分类。仿真结果表明,该研究方法在诊断准确率及训练时间方面优于传统的神经网络故障诊断方法。
鲁东大学数学与统计科学学院多元统计分析课件 PCA的应用之综合评价。
鲁东大学数学与统计科学学院多元统计分析课件 PCA软件实现及应用。
Probabilistic Auto-Associative Models and Semi-Linear PCA
Probabilistic Auto-Associative Models Semi-Linear PCA
2012/11/22
Auto-Associative models cover a large class of methods used in data analysis. In this paper, we describe the generals properties of these models when the projection component is linear and we propose ...
An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA
Inverse Power Method for Nonlinear Eigenproblems Applications 1-Spectral Clustering Sparse PCA
2011/3/2
Many problems in machine learning and statistics can be formulated as (generalized)eigenproblems. In terms of the associated optimization problem, computing linear eigenvectors amounts to finding crit...
An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA
Inverse Power Method Nonlinear Eigenproblems
2011/1/4
Many problems in machine learning and statistics can be formulated as (generalized) eigenproblems. In terms of the associated optimization problem, computing linear eigenvectors amounts to finding cri...
Sparse PCA: Convex Relaxations, Algorithms and Applications
Sparse PCA Algorithms Applications
2010/11/22
Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonzero coefficients in th...
The study of multivariate temporal data using PCA under linear constraints (PCA-LC)
PCA Rayleigh quotient linear constraints R-criteria
2010/9/10
PCA under Linear Constraints (PCA-LC) is a PCA in which we impose to the principal axis and components to belong to some sub-spaces. The Idea is to look for the principal axis and components by the op...